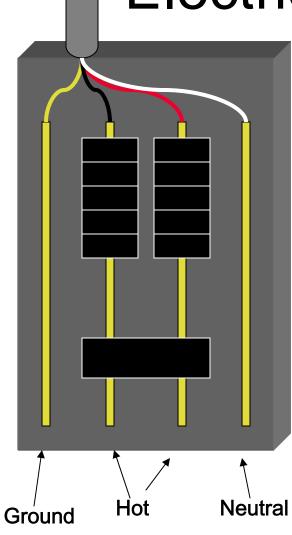
ECE313 Music & Engineering Microphones, Speakers and Electricity

Tim Hoerning Fall 2008

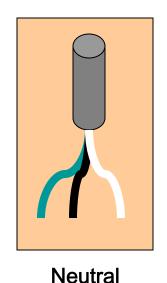
(last modified 9/14/08)

Overview


- A/C Electrical Basics
- Microphones
 - Dynamic
 - Condenser
 - Ribbon
- Speakers
 - Voice Coil
 - Electro-Static
- Other stuff
 - The Theremin the first electronic instrument
 - Power!
 - Ground Loops
 - Active and Passive filters (the tone stack)

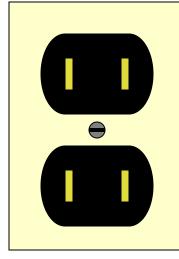
Alternating Current Basics

WARNING!


- Electricity can kill you
 - There is a reason the Electric Chair was chosen as a method of execution
 - It only takes a couple of milliamps across the heart to cause the muscles to react
- The information provided her is for educational purposes only.

Electrical Distribution

- Most houses are fed with nominally 110 VAC @ 60 Hz
 - Actual voltage depends on system and network load
 - This is typically called Single Phase,
 - although there are really two phases
 - Each is 180 degrees from the other
- There are four conductors in the panel
 - The two "hot" conductors run through the center of the panel.
 - Loads are tied to the hot bars through circuit breakers (that overload and break the circuit if too much current is drawn)
 - The loads should be evenly balanced between the two phases so minimal current flows in the neutral wire to the pole.
 - Some loads require 220 volts. These require a breaker that connects to both phases.
 - There is a neutral conductor that is tied to ground on the distribution pole outside of the house – this should carry minimal current
 - The ground conductor should be tied to a water pipe inside the house and should never conduct current.

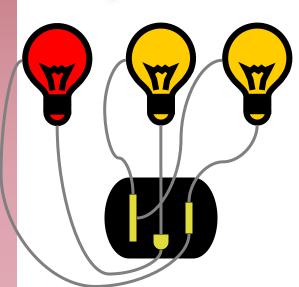

Outlets

Ground Hot

- From the Breaker box, power runs to outlets
 - There are two common types of wire for outlet level distribution
 - Armored cable (often called BX) has a hard outer shell that protects it from many forms of physical damage
 - Romex Is the three conductors incased in a single sheaf of vinyl
 - A typical run of electrical wire has three colored conductors
 - Black = hot, which is at 110VAC relative to ground
 - White = neutral the return leg of the circuit
 - Green = Safety Ground. Chasses should be tied to this and it should not conduct current.
- Outlets have evolved through the years to the current 3 prong standard (shown at left).
 - On older outlets, the ground connect was made through the screw, and not an explicit part of the plug
 - Polarized plugs made neutral separate from hot

Why do we care?

Safety!


- Modern amplifiers usually connect the chassis ground to earth ground, but was not always the case.
 - Often, the chassis was supposed to be set at ground potential through "the death cap"
 - On many older amplifiers, with out a polarized plug, the "anti-hum" switch often switched the connections between hot and neutral
 - This could allow the chassis to float at 110VAC relative to ground.
 - This would be especially dangerous if the PA was grounded correctly.

Noise

Ground Loops

Testing Outlets

- You can get a very simple outlet tester at the hardware store for about \$5.
- Before plugging an amplifier into strange power, you should check all of the outlets with one of these.
 - Newer testers also have a button to test ground-fault circuits.
 - A ground fault circuit interrupt (GFCI) detects when the current flowing in the hot and neutral legs are imbalanced
 - An imbalance indicates that significant current is running to ground.
 - GFCI outlets are required in bathrooms, kitchens and outdoor outlets.

Ground Loops

- When ground is connected in more than one place, the loop acts like an antenna (or a guitar pickup)
- To avoid Ground Loops, use a star topology
 - For unbalanced cables, lift the signal ground at one end to prevent ground loops
- Use filters if necessary to reduce
 - Radio Frequency Interference
 - Electro-Magnetic Interference
- There are three types of shield cable (listed in increasing order of effectiveness)
 - Braided
 - Stranded
 - Foil

Wire Size

- Wire is measured in terms of the American Wire Gage (AWG)
 - Numbers range from 0000,000,000,0,1,2,...40 and higher
 - Higher numbers indicate thinner diameters
 - The resistance is a function of the diameter
- House wiring is typically
 - 14 gage for a 15 amp circuit
 - 12 gage for a 20 amp circuit
- Circular Mils are really square mils!

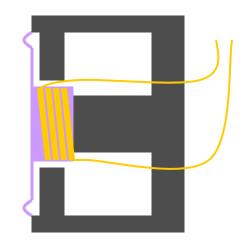
Gage	Diameter (mils)	Circular Mils (Area)	Ohms per 1000 ft at 25 C
1	289.3	83,690	0.1264
2	257.6	66,370	0.1593
10	101.9	10,380	1.018
12	80.81	6530	1.619
14	64.08	4107	2.575
20	31.96	1022	10.35
22	25.35	642.4	16.46
24	20.10	404.0	26.17
40	3.145	9.88	1069

Microphones

- A Microphone is a transducer
 - It converts acoustic energy into electrical energy
- The quality of the given recording depends on
 - The externals placement in the environment relative to the sound source
 - The internals quality of the microphone, the pattern, etc
- Two major prevalent types of microphones.
 - Dynamic
 - Condenser

Microphones

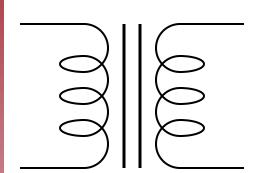
Moving Coil Dynamic Microphone

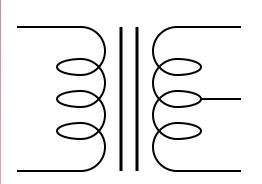

- Operates by electromagnetic induction
 - When conductive metal cuts the flux of a magnetic field, a current is induced.

Parts

- Mylar diaphragm (roughly 0.35 mils think). reacts to the acoustic energy
- Voice Coil connected to the diaphragm so it moves when the diaphragm moves
- Magnetic field the armature that the voice coil moves in. A permanent magnet creates the lines of flux that the voice coil moves in.

Operation

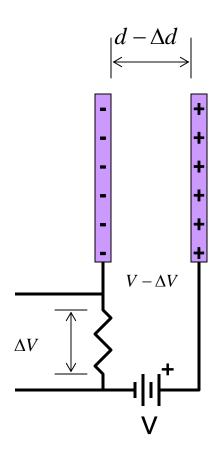

- Acoustic sound waves strike the diaphragm
- Diaphragm moves in response to pressure changes, this moves the voice coil
- Voice coil cuts the flux lines of the magnet
- Electrical signal is induced in the wires



Ribbon Microphone

- A Ribbon Microphone is another type of dynamic microphone
- The Ribbon is a very thin (~2 micro meters) aluminum ribbon that is placed in a strong magnetic field.
- The Ribbon receives acoustic energy and moves in vibration.
- A voltage is induced on the ribbon.
- Because the of the short length of the ribbon, the impedance is very low.
 - A transformer is needed to convert the low impedance ribbon up to the 150 – 600 ohm range typical for dynamic microphones
- Ribbons are somewhat fragile as a strong sound could tear the ribbon

Aside: Transformers



- Transformers are often used in audio to couple AC signals while blocking DC signals.
- Transformers are a set of coils wrapped around a common ferro-magnetic core.
 - Current flowing through winding one induces a current in the other winding.
- Transformers are usually specified by the number of turns (N) in the secondary side relative to the primary side.
 - The AC voltage is transformed a V_{out}=V_{in}*N
 - The AC current is transformed as I_{out}=I_{in}*N
 - Using Ohms law, we find that $Z_{out}=Z_{in}*N^2$
- Transformers may also have a center tap.
 - If this is used as a ground reference, the two outer legs provide out of phase signals

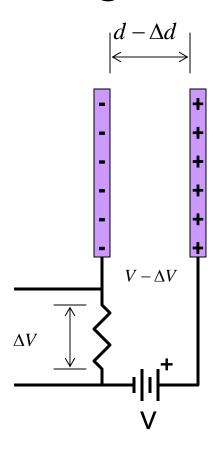
Condenser Microphone

- The condenser is another name for which passive electrical component
- Parts
 - The head of the microphone contains two plates, one fixed and one movable.
 - These two plates are the parallel plates of a capacitor.

Condenser Microphone

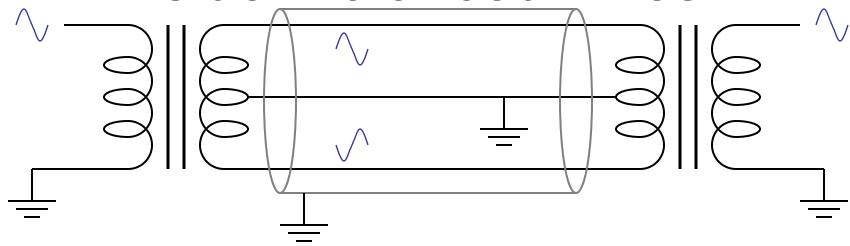
- The Charge on a capacitor is the product of the voltage applied and the capacitance of the device.
- The capacitance of a parallel plate capacitor is the product of the permittivity of the material and the Area of the plates divided by distance between the plates
- As one plate is moved by sound waves, the distance between the two plates changes
- This changes the capacitance of the element and creates the voltage.

$$Q = CV$$


$$C = \frac{\mathcal{E}A}{d}$$

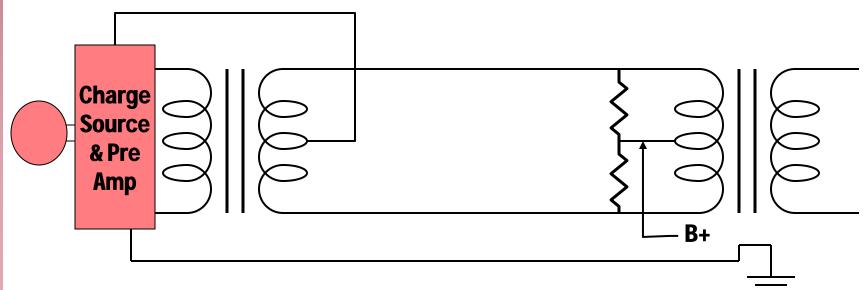
$$\Delta V = \frac{Q}{\Delta C}$$

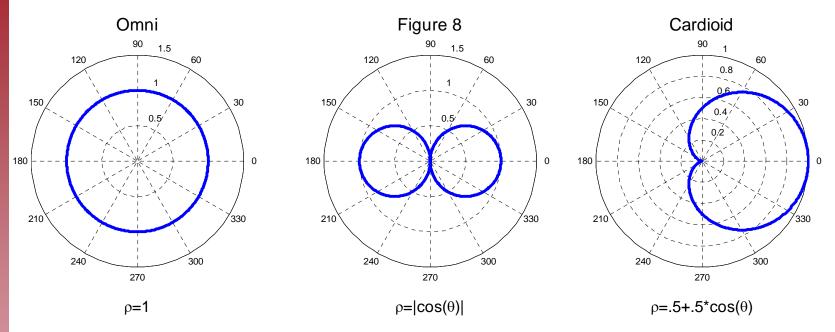
$$\Delta V = \frac{Q \cdot \Delta d}{\varepsilon A}$$


Condenser Microphone Voltage

- In order for the Condenser microphone to function it needs a source of charge.
 - The charge is created by applying a batter to the two plates.
 - The charge will flow onto the plates until an equilibrium is achieved
 - The charge is considered constant.
 - The output voltage is created by the change in capacitance
- The resistance inside in the microphone must be large such that the time constant is larger than audio frequencies (this allows the charge to be considered constant)
- The signal induced is very small and the impedance of the microphone is very large
 - An pre-amplifier is required and must be built into the base of the microphone to minimize noise

$$\Delta V = \frac{Q}{\Delta C}$$


Aside: Balanced Lines


- One popular technique for minimizing noise interference is to use balanced cables.
- Instead of just a signal and ground conductor, balanced lines typically use 3 or 4 conductors
 - Signal
 - Inverted Signal
 - Signal Ground
 - Shield Ground
- There are a few common connectors
 - Tip, Ring, Shield 1/4" jacks
 - XLR

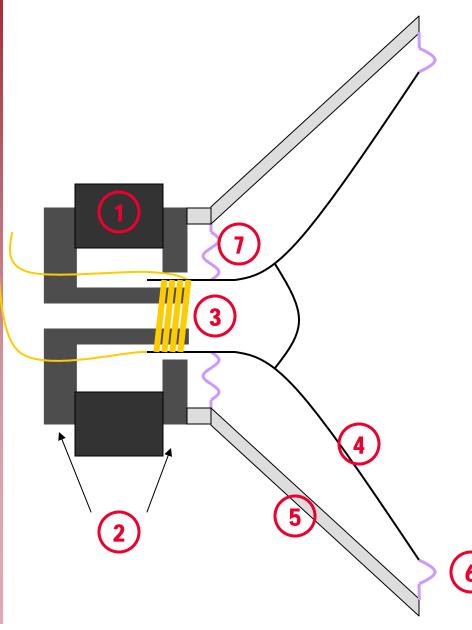
Phantom Power

- All condensers need a source of power
 - To provide charge for the plate
 - To power in the internal pre-amplifier
- A common technique for supplying power to a condenser is to use "phantom power"
 - The puts a DC voltage on both of the signal lines of a balanced cable
 - The microphone extracts this voltage and uses it to power the charge source and the pre amp.

Directivity

- Microphones usually some combination of the above three basic patterns
 - Omni receives signals from all directions equally
 - Bi-Directional (figure 8) received from two directions well, but less from other directions
 - Cardioid A mixture of Omni and figure 8.
- Can Mix further to get other patterns
 - Hyper Cardioid
 - Super Cardiod

Specifications

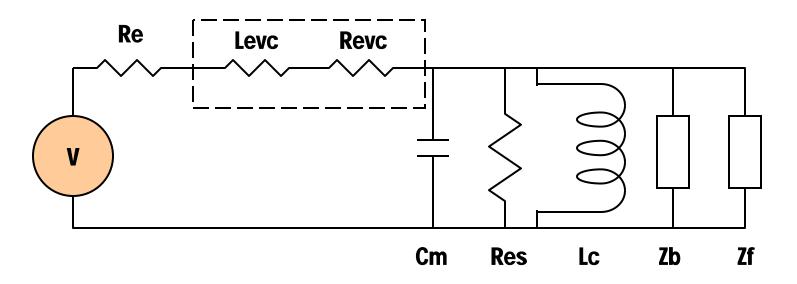

- Frequency Response
 - Microphones may be designed to be as flat as possible, or may include a characteristic response in parts of the spectrum
 - The frequency response will depend on the angle of the sound source relative to the front of the microphone element.
 - Directional microphones often suffer from a Proximity effect there
 is an increased bass response when used close to the sound source
- Transient Response how quickly does the microphone react to a transient sound (impulse)
 - Dynamic microphones are generally the slowest the most mass to move
 - Ribbon microphones are much quicker
 - Condensers are probably the most accurate
- Sensitivity What is the voltage output given a known input in Sound Pressure Levels (SPLs)

Impedance

- Microphones all have different output impedances based on physical parameters
- 2 broad categories
 - Low Impedance = 50, or 150-250 ohm
 - High Impedance = 20k 50k ohm
- High impedance microphones were preferred with vacuum tubes because of the high input impedance of tubes
- Cables
 - High impedance microphone lines are more susceptible to electrostatic noise.
 - A shield cable is required
 - This shield cable acts a capacitive load
 - Very low impedance (50 ohm) microphones can be run with twisted pair cable
 - Low impendence microphones (150 250 ohm) are usually run with balanced cables (typically through XLR connectors)

Speakers

Woofer



- Magnet creates the magnetic force used to move the speakers
- 2. Front Plate & Pole Piece directs the lines of magnetic flux to focus on the speaker
- 3. Voice Coil input signal is connected to the voice coil to move the speaker in response to an electrical signal
- 4. Cone Connected to the voice coil, this moves the air in response to the electrical signal
- **5. Frame** The structure that supports the speaker
- **Surround** Holds the outer edge of the speaker
- 7. Spider Supports the inner edge of the speaker and provides the main restoring force

Systems

- Motor System
 - Magnet, Pole Piece, Front gap/plate & Voice coil
 - Acts like a motor to move the speakers in response to an electrical signal
 - For it to work properly, the flux through the coil must be uniform
 - Overhung geometries coil is much larger than the gap
 - Underhung geometries gap magnet is much larger than the coil width.
- Diaphragm
 - Cone & Dust Cap
 - Ideally Approximates a piston pushing air
 - Limits
 - Lower Frequency limited by the resonant frequency of the speaker (below which it takes more energy to operate at)
 - High Frequency limited by air resistance
 - Smaller cones are used for higher frequencies
- Suspension
 - Spider & Surround
 - Provides restoring, holds the speaker cone

Electrical Model

- Re DC resistance of the voice coil
- Revc real part of voice coil inductance
- Levc imaginary part of voice coil inductance
- Cm driver mass
- Lc driver compliance
- Res driver suspension losses
- Zb rear radiation of the driver
- Zf front radiation of the driver

References

- Basic Electronics, 5th Ed. Grob. McGraw Hill, 1984
- Modern Recording Techniques, 3rd Ed. Huber
 & Runstein [ISBN 0-672-22682-0]
- Handbook of Recording Engineering, Eargle, Springer Verlaig [ISBN 978-0-387-28470-5]
- The Loud Speaker Design Cookbook, Dickason, Audio Amateurs Press [ISBN 1-882580-10-9]
- http://www.woofertester.com/