Music and Engineering: Just and Equal Temperament

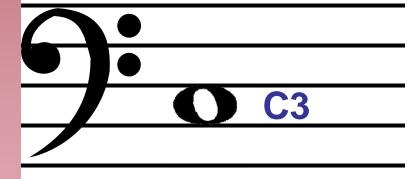
Tim Hoerning Fall 2008

(last modified 9/01/08)

Outline

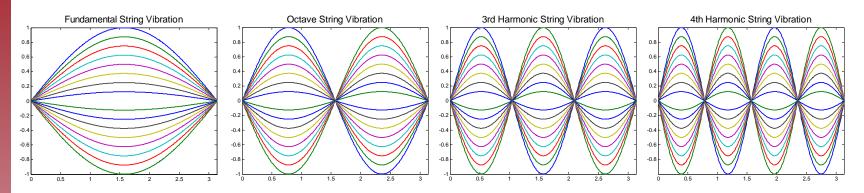
- Definitions and Conventions
- Notes on the Staff
- Basics of Scales
 - Harmonic Series
 - Harmonious relationships
- Cents
- Just Intonation
- Scales of Just Intonation
 - Chromatic
 - Major
 - Minor
- The issue: Notes ~= Frequencies
- Equal Intonation
- Scales of Equal Intonation
 - Chromatic
 - Major
 - Minor
- Even Tempered Instruments
 - Piano
 - Guitar


Definitions

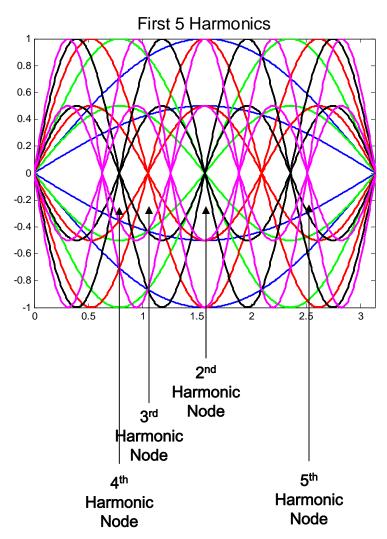

- Tone A tone is a sound sensation having pitch or a sound wave capable of exciting an auditory sensation having pitch.
- Note A note is a conventional sign used to indicate the pitch or the duration or both of a tone sensation.
- Overtone An overtone is a component of a complex tone having a pitch higher than the fundamental. An overtone is a physical component of a complex sound having a frequency higher that that of the fundamental tone.
- Partial A partial is a component of a sound sensation which may be distinguished as a simple sound that cannot be further analyzed by the ear and which contributes to the character of the complex tone or complex sound. A partial is a physical component of a complex tone.
- **Fundamental Frequency** The fundamental frequency is the frequency component of the lowest frequency in a complex sound.
- **Harmonic** A harmonic is a partial or overtone whose frequency is an integral multiple of the fundamental tone or fundamental frequency.
 - The 1st overtone is the 2nd harmonic
- Sub-harmonic A sub-harmonic is an integral sub-multiple of the fundamental frequency of the sound to which it is related.

Staff

- We need some way of identifying the different notes called C (or D, E, etc)
- There are many methods
 - C0 as middle C,
 - Octaves below are C-1, C-2, etc
 - Octaves above are C1, C2 etc
 - Using upper and lower case a tick marks
- Our preferred method will be to use C4 for middle C.
 - Using this convention C0 is inaudible at below 20Hz, but A0 and B0 are just above that.
 - This corresponds to the convention used in the MIDI standard



Natural origins of scales


- Scales are supposed to be "smooth, regular, pleasant, and harmonious"
- The Vibrations of the a string create certain harmonics (i.e. overtones that are multiples of the fundamental).
- These are called the "Harmonic Series"
- The intervals are related by the following ratios
 - -2:1, 3:2, 4:3, 5:3, 5:4, 6:5, 8:5, etc

Asside: String Vibrations

- The 4 plots above show the constituent string vibrations that happen when a string vibrates
- The relative amplitudes of the vibrations depend on
 - The type of excitation
 - Plucked
 - Struck
 - The location of the striking mechanism

Asside: Isolating Harmonics on a vibrating string

- Shown at left are all of the harmonics superimposed.
- It is possible to damped certain harmonics, while letting others ring out.
 - This is called sounding the natural harmonics on a guitar (or other stringed instrument)
 - A guitarist can accomplish this by placing a finger momentarially at the node of a harmonic.
 - All the other harmonics that have a node there as well, will still sound (i.e. the 4th harmonic has a node at the 2nd harmonic's only node)
 - All other harmonics will stop vibrating.

First 10 tones of the Harmonic Series

Frequency (Hz)	Multiple	Ratio	Note	Harmonic	Position
66	1	1:1	C2	1st (fundamental)	2 nd line below bass staff
132	2	2:1	C3	2 nd (octave)	2 nd space in bass staff
198	3	3:2	G3	3 rd	Top space in bass staff
264	4	4:3	C4	4 th	Middle C – in between staffs
330	5	5:3	E4	5 th	Bottom line of treble staff
396	6	6:5	G4	6 th	2 nd line of treble staff
462	7	7:4	B b 4	7 th	Middle line of treble staff
528	8	2:1	C5	8 th	3 rd space from bottom on treble staff
594	9	9:8	D5	9 th	4 th line from bottom on the treble staff
660	10	5:4	E5	10 th	Top space of treble staff

- Notice that the majority of harmonics in the series are
 - Octaves
 - Fifths
 - Thirds
- This might explain the naturally pleasy sound of the major chord

Ratios

- Notice the ratios on the previous slide
 - The ratio of 2:1 is an octave and the most harmonious interval
 - The next most pleasant combination of tones is the fifth, which has a ratios of 3:2
 - After that, the order of pleasing ratios is 2:1 > 3:2 > 4:3 > 5:4 > 6:5 > 8:5 > 5>3
 - There is some subjectivity of what is "pleasing", but there is also an abundance of musical history based on these ratios
- It can said that the most pleasing ratios are
 - Expressed via two integers
 - Neither should be very large

Intonation

- "Intonation is the process of adjusting or selecting the tones of a musical scale with respect to frequency"
 - i.e. it is the formula and the process for building a musical basis from tones
- A scale that uses only intervals found in the harmonics series is called just intonation.
- Intonating is the process of aligning a fretted instrument so that the fretted notes are correct (according to the rules of equal intonation) relative to the open strings

Cents

$$cents = 1200 * \log_2 \left(\frac{x}{y}\right)$$

- Cents are a convenient way to measure the difference between two notes
- As will be seen later, they make the most sense with equal temperament.

Complete Scale of Just Intonation

Interval Name	Frequency ratio of starting point	Cents from starting point	Key of C
Unison	1:1	0	С
Semitone	16:15	111.731	
Minor tone	10:9	182.404	
Major tone	9:8	203.910	D
Minor third	6:5	315.641	
Major third	5:4	386.314	Е
Perfect fourth	4:3	498.045	F
Augmented fourth	45:32	590.224	
Diminished fifth	64:45	609.776	
Perfect fifth	3:2	701.955	G
Minor sixth	8:5	813.687	
Major sixth	5:3	884.359	Α
Harmonic minor seventh	7:4	968.826	
Grave minor seventh	16:9	996.091	
Minor seventh	9:5	1017.597	
Major seventh	15:8	1088.269	В
Octave	2:1	1200.000	С

Major Scale of Just Intonation

Interval Name	Frequency ratio of starting point	Ratio to previous	Interval to Previous Name	Interval Symbol	Cents from starting point	Key of C
Unison	1:1				0	С
Major tone	9:8	9:8	Major tone		203.910	D
Major third	5:4	10:9	Minor tone		386.314	Е
Perfect fourth	4:3	16:15	Semitone		498.045	F
Perfect fifth	3:2	9:8	Major tone	II	701.955	G
Major sixth	5:3	10:9	Minor tone		884.359	А
Major seventh	15:8	9:8	Major tone		1088.269	В
Octave	2:1	16:15	Semitone		1200.000	С

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

- Notice the Ratios of the major chords from the scale (C: E: G; F: A: C and G: B: D)
 - The ratios are all 4:5:6
- In total, there are only three distinct ratios needed to build the major scale
 - The Major tone (9:8), Minor tone (10:9) and Semitone (16:15)
- The lines represent the number of name differences for the notes
 - Two lines means 2 notes differences (a whole step)
 - One line means 1 notes difference (a half step)

Minor Scale of Just Intonation

Interval Name	Frequency ratio of starting point	Ratio to previous	Interval to Previous Name	Interval Symbol	Cents from starting point	Key of Am
Unison	1:1				0	А
Major tone	9:8	9:8	Major tone		203.910	В
Minor third	6:5	16:15	Semitone		315.641	С
Perfect fourth	4:3	10:9	Minor tone		498.045	D
Perfect fifth	3:2	9:8	Major tone	II	701.955	Е
Minor sixth	8:5	16:15	Semitone		813.687	F
Minor seventh	9:5	9:8	Major tone		1017.597	G
Octave	2:1	10:9	Minor tone		1200.000	А

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

- Notice the Ratios of the minor chords from the scale (A : C : E ; E : G : B and D : F : A)
 - The ratios are all 10:12:15
- The same three distinct ratios are needed to build the minor scale
 - The Major tone (9:8), Minor tone (10:9) and Semitone (16:15)
- The lines represent the number of name differences for the notes
 - Two lines means 2 notes differences (a whole step)
 - One line means 1 notes difference (a half step)

Sample Frequencies of Notes in Various Keys

Note	Key														
	С	D	E	F#	G	Α	В	C#	οþ	Εþ	F	G Þ	Αb	В	СЪ
Cb4											247.2				247.2
C4	264.0				264.0				260.7	260.7	264.0		260.7	264.0	
C#4		278.4	275.0	278.4		275	278.4	278.4							
D 7 4									278.1			278.1	278.1		278.1
D4	297.0	297.0			297.0	293.3				293.3	293.3				
D#4			309.4	309.4			309.4	313.2							

- This table shows the calculations for some notes in some keys (all using A=440 Hz and the ratios shown previously)
- Note that the same note may have different frequencies in different keys
 - This is one of the fundamental problems that led to the abandonment of just temperament
 - This also made transposition from one key to another difficult.
- Note that the enharmonics that we considered equivalent last week are different frequencies
- It is possible to complete the full table for all keys
 - Doing this would show a requirement of at least 30 discrete frequencies per octave

Equal Tempered Pitch

- "Temperament is the process of reducing the number of tones per octave by altering the frequency of the tones from the exact frequencies of just intonation"
- The solution is to divide the octave into 12 equal steps such that the ratios follow the following pattern

$$1, f, f^2, f^3, f^4, f^5, f^6, f^7, f^8, f^9, f^{10}, f^{11}, f^{12}$$

Subject to the following condition on the octave

$$f^{12} = 2$$

Means that

$$f = \sqrt[12]{2}$$

Intervals in Equal Temperment

- This divides the octave into 12 equal tempered half tones or half step. Each interval is computed as a multiple of the twelfth root of 2.
- Two half steps or half tones equals one whole step or whole tone.
- Each half tone is exactly 100 cents
- Given this formula one could create a table of equal temperament showing the frequency for each note name
 - This would show that each note name has exactly one frequency
 - There are only 12 distinct notes between octaves

Complete Scale of Equal Intonation

Interval Name	Frequency ratio of starting point	Cents from starting point	Key of C
Unison	1:1	0	С
Semitone (Minor second)	¹² √2:1	100	
Whole tone (Major second)	$\sqrt[12]{2^2}:1$	200	D
Minor third	$\sqrt[12]{2^3}:1$	300	
Major third	$\sqrt[12]{2^4}:1$	400	E
Perfect fourth	$\sqrt[12]{2^5}:1$	500	F
Augmented fourth / Diminished fifth	$\sqrt[12]{2^6}:1$	600	
Perfect fifth	$\sqrt[12]{2^7}:1$	700	G
Minor sixth	$\sqrt[12]{2^8}:1$	800	
Major sixth	$\sqrt[12]{2^9}:1$	900	А
Minor seventh	$\sqrt[12]{2^{10}}:1$	1000	
Major seventh	$\sqrt[12]{2^{11}}:1$	1100	В
Octave	$\sqrt[12]{2^{12}}:1$	1200	С

Major Scale of Equal Intonation

Interval Name	Frequency ratio of starting point	Ratio to previous	Interval to Previous Name	Interval Symbol	Cents from starting point	Key of C
Unison	1:1				0	С
Major second	$\sqrt[12]{2^2}:1$	$\sqrt[12]{2^2}:1$	Whole step		200	D
Major third	$\sqrt[12]{2^4}:1$	$\sqrt[12]{2^2}:1$	Whole step		400	Е
Perfect fourth	$\sqrt[12]{2^5}:1$	¹² √2 :1	Half step		500	F
Perfect fifth	$\sqrt[12]{2^7}:1$	$\sqrt[12]{2^2}:1$	Whole step		700	G
Major sixth	$\sqrt[12]{2^9}:1$	$\sqrt[12]{2^2}:1$	Whole step		900	А
Major seventh	$\sqrt[12]{2^{11}}:1$	$\sqrt[12]{2^2}:1$	Whole step		1100	В
Octave	2:1	¹² √2 :1	Half step		1200	С

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

- The same three distinct ratios are needed to build the major scale
 - The whole step and the half step.

Minor Scale of Equal Intonation

Interval Name	Frequency ratio of starting point	Ratio to previous	Interval to Previous Name	Interval Symbol	Cents from starting point	Key of Am
Unison	1:1				0	А
Major second	$\sqrt[12]{2^2}:1$	$\sqrt[12]{2^2}:1$	Whole step	II	200	В
Minor third	$\sqrt[12]{2^3}:1$	¹² √2 :1	Half step		300	С
Perfect fourth	$\sqrt[12]{2^5}:1$	$\sqrt[12]{2^2}:1$	Whole step	II	500	D
Perfect fifth	$\sqrt[12]{2^7}:1$	$\sqrt[12]{2^2}:1$	Whole step	II	700	Е
Minor sixth	$\sqrt[12]{2^8}:1$	$\sqrt[12]{2}:1$	Half step		800	F
Minor seventh	$\sqrt[12]{2^{10}}:1$	$\sqrt[12]{2^2}:1$	Whole step		1000	G
Octave	2:1	$\sqrt[12]{2^2}:1$	Whole step		1200	А

The Natural Minor Scale can be computed as follows:

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

• The Harmonic Minor Scale can be computes as follows:

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

- The Melodic Minor Scale can be computed as follows:
 - Ascending

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

- Descending

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

Comparison

Equal Temperament Interval Name	Frequency ratio of starting point	Cents from starting point	Just Temperament Interval Name	Frequency Ratio from Starting Point	Cents from starting point	Key of C
Unison	1:1	0	1:1		0	С
Semitone (Minor second)	¹² √2:1	100	Semitone	16:15	111.731	
Whole tone (Major second)	$\sqrt[12]{2^2}:1$	200	Major tone	9:8	203.910	D
Minor third	$\sqrt[12]{2^3}:1$	300	Minor third	6:5	315.641	
Major third	$\sqrt[12]{2^4}:1$	400	Major third	5:4	386.314	Е
Perfect fourth	$\sqrt[12]{2^5}:1$	500	Perfect fourth	4:3	498.045	F
Augmented fourth / Diminished fifth	$\sqrt[12]{2^6}:1$	600	Diminished fifth	64:45	609.776	
Perfect fifth	$\sqrt[12]{2^7}:1$	700	Perfect fifth	3:2	701.955	G
Minor sixth	$\sqrt[12]{2^8}:1$	800	Minor sixth	8:5	813.687	
Major sixth	$\sqrt[12]{2^9}:1$	900	Major sixth	5:3	884.359	А
Minor seventh	$\sqrt[12]{2^{10}}:1$	1000	Minor seventh	9:5	1017.597	
Major seventh	$\sqrt[12]{2^{11}}:1$	1100	Major seventh	15:8	1088.269	В
Octave	$\sqrt[12]{2^{12}}:1$	1200	Octave	2:1	1200.000	С

Results

- The maximum definition between just and equal temperament is +/- 2 percent
 - Good enough for most cases
 - Some things are still tweaked a bit
 - Stretch tuning
 - Micro tonal adjustmens

Annotated References

- Music, Physics & Engineering, Olson
- Jeans
- http://www.harmonycentral.com/Guitar/harmonics.html
 - Nice explanation of vibrating string harmonics
- http://en.wikipedia.org/wiki/Meantone_temperament
 - More excellent wikipedia articles on temperament
- http://www.phys.unsw.edu.au/jw/notes.html
 - MIDI reference chart